Apie traukinio vagonus su keleiviais

Sveiki. Pagelbėkite su tikimybėmis:Į tris traukinio vagonus įlipo devyni keleiviai. Kiekvienas keleivis atsitiktinai pasirinko vagoną. 1.Apskaičiuokite tikimybę įvykio, kad į kiekvieną vagoną įlips po tris      keleivius? atsakymą pateikite 0.001 tikslumu (ats.0.085) 2.Kokia tikimybė įvykio, kad į vieną vagoną įlips keturi keleiviai, į kitą-trys keleiviai, o į likusį-du? atsakymą pateikite 0.001 tikslumu(ats 0.384)

peržiūros 359

atsakymai 5

aktyvumas 1 mėn

Kiekvienas keleivis gali pasirinkti iš 3 vagonų, todėl viso pasiskirstymo po vagonus variantų yra: [tex]n=3^9[/tex].
1) Pirmosios dalies atveju palankių baigčių yra tiek:
Į pirmąjį vagoną tris žmones atrinkti yra galimybių: [tex]C_9^3[/tex], į antrąjį: [tex]C_6^3[/tex], į trečiąjį: [tex]C_3^3[/tex]. Viso palankių variantų: [tex]C_9^3\cdot C_6^3\cdot C_3^3[/tex]
Tada tikimybė:
[tex]\dfrac{C_9^3\cdot C_6^3\cdot C_3^3}{3^{9}}=\dfrac{1680}{19683}≈0,085[/tex]

2) Antrosios dalies atveju palankių baigčių yra tiek:
Tarkime į kažkurį iš vagonų lipa 4, į kitą 3, į likusį 2 keleiviai, tada:
4 žmones į vieną iš vagonų parinkti yra galimybių: [tex]C_9^4[/tex], į kitą kažkurį iš likusių: [tex]C_5^3[/tex], į paskutinįjį likusį: [tex]C_2^2[/tex].
Kadangi žmonių grupeles gali pasirinkti tris vagonus [tex]3![/tex] būdais, tai viso palankių baigčių: [tex]C_9^4\cdot C_5^3\cdot C_2^2\cdot 3![/tex]
Tada tikimybė:
[tex]\dfrac{C_9^4\cdot C_5^3\cdot C_2^2\cdot 3!}{3^{9}}=\dfrac{7560}{19683}≈0,384[/tex]

Kodėl pirmuoju atveju žmonių grupės negali pasiskirstyti [tex]3![/tex] būdais?

Kadangi tris trejetus aš galiu užrašyti tik vienu būdu: 3 3 3
O 4, 3 ir 2 šešiais:
4 3 2
4 2 3
3 2 4
3 4 2
2 3 4
2 4 3

Esmė yra kokiam vagone kiek yra žmonių, kai į kiekvieną vagoną lipa po tiek pat, tai nėra daugiau atvejų, o kai skirtingas žmonių skaičius, tai turime taip, kaip antram atvejy.

Paskutinį kartą atnaujinta 2017-05-28

Dėkui :)

Labai ačiū

Norėdami rašyti žinutes privalote prisijungti!