Įrodymo užduotis: trikampio pusiaukraštinė

Įrodykite, kad trikampio pusiaukraštinė dalija pusiau visas tieses nubrėžtas trikampio viduje lygiagrečiai su ta kraštine, į kurią nubrėžta pusiaukraštinė.

peržiūros 251

atsakymai 7

aktyvumas 3 mėn

Gali kaip nors pritaikyti trikampių panašumą.

pagal trikampio savybes tai lygiagrečios tiesės yra proporcingos, o pusiaukraštinė sudaro statuji kampą  todėl akivaidžiai matosi, jog dalina pusiau, bet aš nemoku aprašyti gražiai kodėl dalija pusiau

Nesąmonę parašei. Iš trikampio savybių neseka joks tiesių proporcingumas.

Toks dalykas, kaip proporcingos tiesės, išvis neegzistuoja. Nėra tokio dalyko...

Paskutinį kartą atnaujinta 2017-06-07

Čia praktiškai toks pat uždavinys, kaip matematikos brandos egzamino 2014 29 užduotis.
Čia vertinimo instrukcijoje duodamas sprendimas: http://www.nec.lt/failai/4515_Mat-1-2014-vert.pdf

aš turėjau omeny trikampi pvz jei jo vidurinė linija lygiagreti trikampio pagrindui tai ji yra 1/2 pagrindo kraštines ilgio

ačiū labai

Nežinau, ką tu turi omeny, bet pagal tavo pateiktą sąlygą, aš tau pateikiau sprendimą.

Norėdami rašyti žinutes privalote prisijungti!