eMatematikas Teorija Forumas Akademija VBE Bandomieji Testai

Trigonometrinės lygtys

Funkcijos Peržiūrų sk. [14729]

[tex]\Bigg[
\begin{align*}
& \sin (x)=a \\
& x=(-1)^k \text{arcsin} a+\pi k, \ k\in Z
\end{align*}
[/tex]

[tex]\Bigg[
\begin{align*}
& \text{tg}(x) = a \\
& x=\text{arctg} a+\pi k, \ k\in Z
\end{align*}\ \ \ \ \ \ \ \ \ \ \ [/tex]

[tex]
\Bigg[
\begin{align*}
& \cos (x)=a \\
& x=\pm \text{arccos} a+2\pi k, \ k\in Z
\end{align*}\ \ \ \ [/tex]

[tex]\Bigg[
\begin{align*}
& \text{ctg}(x) = a \\
& x=\text{arcctg} a+\pi k, \ k\in Z
\end{align*} \ \ \ \ \ \ \ \ \ [/tex]

pakeista prieš 3 mėn

Keletas atskirų sinuso lygties atvejų

[tex]\Bigg[
\begin{align*}
& \sin(x) = 0 \\
& x=\pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]  [tex]\Bigg[
\begin{align*}
& \sin(x) = 1 \\
& x=\frac{\pi}{2} + 2\pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]  [tex]\Bigg[
\begin{align*}
& \sin(x) = -1 \\
& x=-\frac{\pi}{2} + 2\pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]

Keletas atskirų kosinuso lygties atvejų

[tex]\Bigg[
\begin{align*}
& \cos(x) = 0 \\
& x=\frac{\pi}{2} + \pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]  [tex]\Bigg[
\begin{align*}
& \cos(x) = 1 \\
& x=2\pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]  [tex]\Bigg[
\begin{align*}
& \cos(x) = -1 \\
& x=\pi + 2\pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]

Keletas atskirų tangento lygties atvejų

[tex]\Bigg[
\begin{align*}
& \text{tg}(x) = 0 \\
& x=\pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]  [tex]\Bigg[
\begin{align*}
& \text{tg}(x) = 1 \\
& x=\frac{\pi}{4} + \pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]  [tex]\Bigg[
\begin{align*}
& \text{tg}(x) = -1 \\
& x=-\frac{\pi}{4} + \pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]

Keletas atskirų kotangento lygties atvejų

[tex]\Bigg[
\begin{align*}
& \text{ctg}(x) = 0 \\
& x=\frac{\pi}{2} + \pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]  [tex]\Bigg[
\begin{align*}
& \text{ctg}(x) = 1 \\
& x=\frac{\pi}{4} + \pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]  [tex]\Bigg[
\begin{align*}
& \text{ctg}(x) = -1 \\
& x=\frac{3\pi}{4} + \pi k, \ k\in \mathbb{Z}
\end{align*}[/tex]

Nori patogiai naršyti matematikos formules, teoriją ir taisykles? Formulynas »