eMatematikas Paieška

need help

Skaičiavimai   Peržiūrų sk. (4789)

reikia apskaiciuoti f'(x0)
a)  f(x) = 3xantruoju-3, x0=1 kaip spresti?
b)  f(x) = 1/(xantruoju+1), x0=0 ?

0

l šaknis iš 5 - 3l + l2 - šaknis iš 5l ? (čia modulyje viskas)
Čia kaip suprantu reikia apkeisti skaičius vietom ane?
tada minusas priekyje rasos ir zenklai kaicias, bet jai galit isspreskit

0

nelabai supratau ka parašei

0

cia isvestine. zinau formule, bet ties viena vieta susikertu... http://lt.wikipedia.org/wiki/I%C5%A1vestin%C4%97

0

|√5 -3| +| 2 - √5| ???????

0

√3 – 2 + |1 - +√2| - | 2 - √3 - √2| ????

0

gruzdelka|√5 -3| +| 2 - √5| ???????

|√5 -3| +| 2 - √5| = -√5 +3 - 2 + √5 = 1
gruzdelka√3 – 2 + |1 - +√2| - | 2 - √3 - √2| ????

√3 – 2 + |1 - +√2| - | 2 - √3 - √2| = √3 – 2 - 1 + √2 + 2 - √3 - √2 = -1

0

Išvestinės:

a) f(x) = 3x^2 - 3, f'(x) = 6x, f(1) = 6;
b) f(x) = 1/(x^2+1) = (x^2+1)^(-1), f'(x) = -1 * (x^2+1)' * (x^2 + 1)^(-2) = -2x * (x^2 + 1)^(-2) = -2x / (x^2 + 1)^2, f'(0) = 0. Nors daug linksmiau pasakyti, kad f(x) įgyja maksimumą ties x = 0 ir f turi išvestinę, todėl f'(0) = 0 :)

0

Norėdami rašyti žinutes privalote prisijungti!