eMatematikas Registruotis Ieškoti

Reikia pagalbos su uždaviniu

Skaičiavimai   Peržiūrų skaičius (39454)

Kažkokias baisias išvestines čia rašinėja

Paskutinį kartą atnaujinta 2010-12-23

0

Okey ;] graužies nagus. Dėl detalių susitarsim privačiai ;P

0

Taksas027Kažkokias baisias išvestines čia rašinėja


ten ne išvestinė,.. ten kosmosas ;D

0

house_martinLai lai lai vienas tų skaičių būna "a", o kitas "b". Tada jų kubų suma yra a³+b³. Jei laikyti kad tiek a tiek b yra funkcijos kažkokio parametro x, tai ši suma mažiausia bus ten, kur jos išvestinė pagal tą parametrą yra lygi 0.
[tex]\frac{d}{dx}(a^3+b^3) = 3a^2 \frac{da}{dx} + 3b^2 \frac{db}{dx}=0[/tex]
Iš sąlygos kad a+b=8, galima išreikšti a kaip x, o b kaip 8-x.
Įstačius tatai į tą lygtį aukščiau:
3x² + 3(8-x)² = 0
Nuo čia jau taikai savo keturių žingsnių programą.


Oho, kaip gražiai. Menka pastaba, kad priešpaskutinė eilutė yra 3x² - 3(8-x)² (rašybos klaida, tačiau turbūt ne kiekvienas skaitytojas suseks).

Yra ir kitas (mano mėgstamas) metodas spręsti tokius uždavinius, kuris neretai leidžia rasti labai paprastus sprendimus. Pagrindinė idėja yra viską išskaidyti į kvadratus ir pasinaudoti tuo, kad visų realiųjų skaičių kvadratai yra neneigiami:

a³ + b³ = (a + b)(a² - ab + b²)
            = (a + b)(1/4 * (a + b)² + 3/4 * (a - b)²)
            = 8 * (1/4 * 8² + 3/4 * (a - b)²)
            = 16*8 + 6 (a - b)²,

taigi a³ + b³ reikšmė mažiausia, kai (a - b)² reikšmė mažiausia, t.y. a - b = 0. Kadangi a + b = 8, tai a = b = 4.

0

gudru ;]

0

Norėdami rašyti žinutes privalote prisijungti!

Matematikos testai www.ematematikas.lt/testai Pasikartok matematikos temas spręsdamas online testus!