nežinau ar čia paprasčiausias būdas, bet taip nusipaišai. Trapecijos plotas yra jos pagrindų sumos pusė padauginta iš aukštinės (ruda linija). Aukštinė bus lygi Rsin(a), vienas pagrindas 2R, kitas 2Rcos(a) (R - apskritimo spindulys). Tad plotas pagal tą kampą (a): S = 0.5*(2Rsin(a)+2R)*Rcos(a) = R²cos(a)[sin(a)+1] išvestinė: S' = -R²sin(a)*[sin(a)+1]+R²cos(a)*cos(a) = R²(cos²(a)-sin²(a)+sin(a)) Prilygini nuliui: cos²(a)-sin²(a)-sin(a) = 0 pasinaudoji: cos²(a) = 1 - sin²(a), gaunasi -2sin²(a) - sin(a) + 1 = 0 kvadratinė lygtis, jei sin(a) pasivadint nauju kintamuoju... Bet nuojauta kužka kad kažkaip per sudėtingai aš čia darau ;]
Cia gal ne i tema, bet sprendziu kita uzdavini ir noreciau pasitikslint ar gerai darau ar visai i pievas rasau.
Raskite didziausia plota staciakampio, ibrezto i statuji trikampi, kurio statiniai 4cm ir 5 cm, jei viena staciakampio virsune priklauso izambinei, kita - staciajam trikampio kampui, o likusios dvi - statiniuose.